A corpus-based analysis of differences in the use of very for adjective amplification among native speakers and learners of English
Martin Schweinberger | University of Queensland
This paper analyzes the use of very as an adjective amplifier by native speakers and advanced learners of English with diverse language backgrounds based on the International Corpus of Learner English (ICLE) and the Louvain Corpus of Native English Essays (LOCNESS). The study applies Multifactorial Prediction and Deviation Analysis Using Regression/Random Forests (MuPDARF) to find differences between native speakers and advanced learners and evaluates which factors contribute to learners’ non-target-like use of very. The analysis finds language background and adjective-specific differences in the use of very between learners and native speakers. It shows that collocational preferences of specific adjective types are the most important factor, which is interpreted to show that differences between native speakers and learners are predominantly dependent upon the collocational profiles of individual adjective types. This finding supports approaches that focus on teaching collocations and contextualizing word use.
Keywords: adjective amplification, L1 background, collocation, MuPDARF
Published online: 10 December 2020
https://doi.org/10.1075/ijlcr.20011.sch
https://doi.org/10.1075/ijlcr.20011.sch
References
References
Baayen, R. H.
Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D.
Biber, D., Johansson, S., Leech, G., Conrad, S., & Finegan, E.
Boucher, J., & Osgood, C. E.
The British National Corpus, version 3 (BNC XML Edition)
(2007) Distributed by Bodleian Libraries, University of Oxford, on behalf of the BNC Consortium. Retrieved from http://www.natcorp.ox.ac.uk/ (accessed May 2020).
D’Arcy, A. F.
Edmonds, A., & Gudmestad, A.
Ellis, N. C.
Fallas Escobar, C., & Chaves Fernández, L.
Forsberg, F.
Gass, S. M., & Mackey, A.
Granger, S.
Granger, S., Dagneaux, E., & Meunier, F.
Gries, S. Th.
Gries, S. Th., & Adelman, A. S.
Gries, S. Th., & Deshors, S. C.
Heller, B., Bernaisch, T., & Gries, S. Th.
Hendrikx, I., Van Goethem, K., & Wulff, S.
Hinkel, E.
Hornik, K.
(2016) openNLP: Apache OpenNLP Tools Interface (Version 0.2-6). Retrieved from https://cran.r-project.org/web/packages/openNLP/openNLP.pdf (accessed January 2020).
Hyland, K.
Ito, R., & Tagliamonte, S.
Jockers, M.
(2017) syuzhet: Extracts Sentiment and Sentiment-Derived Plot Arcs from Text. (Version 1.0.1). Retrieved from https://github.com/mjockers/syuzhet (accessed January 2020).
Kennedy, G.
Labov, W.
Lorenz, G. R.
Mohammad, S. M., & Turney, P. D.
Nesselhauf, N.
Paradis, C.
Partington, A.
Pérez-Paredes, P., & Díez-Bedmar, M. B.
Peters, H.
Philip, G.
(2008) Adverb use in EFL student writing: From learner dictionary to text production. In E. Bernal & J. DeCesaris (Eds.), Proceedings of the XIII EURALEX International Congress (Barcelona, 15–19 July 2008) (pp. 1301–1310). Barcelona: Institut Universitari de Lingüística aplicada Universitat Pompeu Fabra.
Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J.
R Core Team
(2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org (accessed January 2019).
Saffran, J. R.
Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S.
Szmrecsanyi, B.
Tagliamonte, S.
Tagliamonte, S., & Roberts, C.
Tomasello, M.
Wagner, S.
Wulff, S., & Gries, S. Th.