Article published in:
International Journal of Learner Corpus Research
Vol. 6:2 (2020) ► pp. 220236
References

References

Alexopoulou, T., Geertzen, J., Korhonen, A., & Meurers, D.
(2015) Exploring big educational learner corpora for SLA research: Perspectives on relative clauses. International Journal of Learner Corpus Research, 1(1), 96–129. CrossrefGoogle Scholar
Alexopoulou, T., Michel, M., Murakami, A., & Meurers, D.
(2017) Task effects on linguistic complexity and accuracy: A large-scale learner corpus analysis employing natural language processing techniques. Language Learning, 67(S1), 180–208. CrossrefGoogle Scholar
Callies, M.
(2015) Learner corpus methodology. In S. Granger, G. Gilquin, & F. Meunier (Eds.), The Cambridge handbook of learner corpus research (pp. 35–56). Cambridge: Cambridge University Press. CrossrefGoogle Scholar
Feinerer, I., & Hornik, K.
(2018) tm: Text Mining Package. Retrieved from https://​cran​.r​-project​.org​/package​=tm
Geertzen, J., Alexopoulou, T., Baker, R., Hendriks, H., Jiang, S., & Korhonen, A.
(2013) The EF Cambridge Open Language Database (EFCAMDAT). User Manual Part I: Written Production. Retrieved from https://​corpus​.mml​.cam​.ac​.uk/
Geertzen, J., Alexopoulou, T., & Korhonen, A.
(2014) Automatic linguistic annotation of large scale L2 databases: The EF-Cambridge Open Language Database (EFCamDat). In R. T. Millar, K. I. Martin, C. M. Eddington, A. Henery, N. M. Miguel, & A. Tseng (Eds.), Selected proceedings of the 2012 Second Language Research Forum (pp. 240–254). Somerville, MA: Cascadilla Proceedings Project.Google Scholar
Grün, B., & Hornik, K.
(2011) topicmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1–30. CrossrefGoogle Scholar
Huang, Y., Geertzen, J., Baker, R., Korhonen, A., & Alexopoulou, T.
(2017) The EF Cambridge Open Language Database (EFCAMDAT): Information for users (pp. 1–18). Retrieved from https://​corpus​.mml​.cam​.ac​.uk/
Huang, Y., Murakami, A., Alexopoulou, T., & Korhonen, A.
(2018) Dependency parsing of learner English. International Journal of Corpus Linguistics, 23(1), 28–54. CrossrefGoogle Scholar
Kaliyaperumal, S. K., Kuppusamy, M., Arumugam, S., Kannan, K. S., Manoj, K., & Arumugam, S.
(2015) Labeling methods for identifying outliers. International Journal of Statistics and Systems, 10(2), 231–238.Google Scholar
Lang, D. T.
(2020) XML: Tools for parsing and generating XML within R and S-Plus. Retrieved from https://​cran​.r​-project​.org​/package​=XML
McEnery, T., Brezina, V., Gablasova, D., & Banerjee, J.
(2019) Corpus linguistics, learner corpora, and SLA: Employing technology to analyze language use. Annual Review of Applied Linguistics, 39, 74–92. CrossrefGoogle Scholar
Murakami, A.
(2013) Individual variation and the role of L1 in the L2 development of English grammatical morphemes: Insights from learner corpora (Unpublished doctoral dissertation). Cambridge University.Google Scholar
(2016) Modeling systematicity and individuality in nonlinear second language development: The case of English grammatical morphemes. Language Learning, 66(4), 834–871. CrossrefGoogle Scholar
Ooms, J.
(2018) cld2: Google’s compact language detector 2 (Version 1.2). . Retrieved from https://​cran​.r​-project​.org​/package​=cld2
Shatz, I.
(2019) How native language and L2 proficiency affect EFL learners’ capitalisation abilities: A large-scale corpus study. Corpora, 14(2), 173–202. CrossrefGoogle Scholar
Van der Loo, M. P. J.
(2014) The stringdist package for approximate string matching. The R Journal, 6(1), 111–122. Retrieved from https://​cran​.r​-project​.org​/package​=stringdist
Wickham, H., François, R., Henry, L., Müller, K., & RStudio
(2019) dplyr: A grammar of data manipulation. Retrieved from https://​cran​.r​-project​.org​/web​/packages​/dplyr​/index​.html
Wickham, H., & RStudio
(2019) stringr: Simple, consistent wrappers for common string operations. Retrieved from https://​cran​.r​-project​.org​/web​/packages​/stringr​/index​.html